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Lidar Measurement of Optical Turbulence:

Theory of the Crossed Path Technique

1. INTRODUCTION

With the advent of lasers and their widespread application, the importance of atmospheric
optical turbulence has grown. Atmospheric turbulence degrades the propagation of laser beams
through the atmosphere. Specifically, wind fluctuations induce density or temperature fluctuations.
These temperature fluctuations in tum result in fluctuations of the atmospheric refractive index on
scale sizes from a centimeter (or less) to tens of meters. Thus, the refractive index is not
homogeneous across a laser beam wavefront larger than approximately a centimeter. The resulting
effects of the turbulence are a loss of coherence in the beam, beam broadening, beam wander, in-
tensity fluctuations or scintillations and intensity hot spots within the beam.

Analogous effects occur in passive imaging systems. Mitigation of these effects in lasers and
imaging is the goal of adaptive optics compensation methods. Such methods utilize deformable
mirrors to compensate for the turbulence induced phase distortions. The performance and charac-
terization of adaptive optics systems requires a knowledge of the fundamental turbulence parame-
ter, C,2, as well as auxiliary meteorological and wind data. These parameters allow specification
of the number of mirror actuators, the maximum allowable look-ahead or lag angle, and the band-
width requirements (or maximum lag time) of the adaptive system. A point that requires emphasis
is that these systems require the characterization of an optical path. Such paths are typically of the
order of a meter in diameter. Furthermore, such systems require the characterization of the optical
path over short time scales. Of course, these paths need to be specified in terms of ensemble aver-
ages; the specification of an instantaneous wavefront fluctuation is required only for the entire

Received for publication 27 June 1991.




propagation path and provides the specific information for performing phase conjugation using
adaptive compcients.

The requirements for the specification of the atmospheric effects are in terms of small
volume averages. Such high resolution measurement capability is also needed for more fundamen-
tal studies of atmospheric turbulence, specifically, the fine scale spatial and temporal structure of
turbulence. These issues of turbulence structure pertain to stationarity, intermittency and the as-
sumption of frozen turbulence. One measurement system that seems (at first consideration) to
have the potential for providing such high resolution capability involves the use of lasers for atmo-
spheric remote sensing, that is, lidar. Since the early days of lidar, attempts have been made to use
lidar to measure the atmospheric refractive index fluctuations. Very limited success has been
achieved.

In this report, the various existing methods for measuring optical turbulence and its parame-
ters are surveyed. This demonstrates the source of our existing knowledge of atmospheric optical
turbulence and outlines the limitations of the systems and various measurement issues. A second
brief survey of the various approaches to utilizing lidar for C,? profiling follows. The last several
sections are devoted to the proposal of a concept for lidar turbulence sensing.

2. METHODS OF MEASUREMENT OF OPTICAL TURBULENCE

Measurements of optical turbulence have been made for several years via radars, in situ in-
strumentation carried by balloons, and passive optical instrumentation. All the existing methods
are limited in various ways.

Radars suffer from high cost, and the large space requirements of the antennas eliminate
portability. The maximum vertical resolution is of the order of 150 m in the latest generation Dop-
pler systems!, but horizontal resolution is dictated by beam divergence and consequently horizon-
tal resolution is altitude dependent. Divergence is usually given in degrees or tens of degrees; the
Flatland VHF radar® has a divergence of 3.6 degrees or 626 m at 10 km while the Sousy VHF
radar® has 8 degrees, or 1.4 km horizontal resolution at 10 km. Additionally, radars typically
measure a weak signal and require long averaging times; data is usually reported as 15 minute or 1
hour averages. Shorter averaging times are possible by using larger vertical range cells that are as
large as 1 km in some cases. Radars measure the average turbulence in a large volume, many
times larger than a beam or imaging line of sight. Radars also suffer from two other critical flaws.
First, they cannot measure within the first few kilometers above the ground. This region includes
the atmospheric boundary layer which has a dominant contribution to various optical effects such
as beam wander, broadening and loss of coherence. Second, radars are typically limited to a maxi-

'Hocking. WK. (1986) Observation and measurement of turbulence in the middie atmosphere with a VHF radar, J. Atmos. and Terres.
Physics, 48:655-670.

2Green, J.L., Beland, R.R., Brown, J.H., Clark, W.L., Eaton, F.D., Favier, L.D., Gage, K.S., Hatch, W.H., Hines, J.R., Murphy, E.A.. Nastrom,
G.D., Peterson, W.A., VanZandt, T.E., and Warnock, J.M. (1989) Comparisons of Refractivity Measurements from the Flatlands VHF Radar
with Other Measurement Techniques, Procceedings of the 24™ Conference on Radar Meteorology, Tallahassee, FL, March 27-31.

3Enton, F.D, Peterson, W.A., Hines, J.R., Peterman, K.R., Good, R.E., Beland, R.R. and Brown, J.H. (1988) Comparisons of VHF radsr, opti-
cal and tempersture fluctuation measurements of an, 1o and 8, Theor. Appl. Climatol., 39:17-29.




mum range of 20 km, but this is a less serious flaw since turbulence is of less importance in the
stratosphere in most applications. This range limitation can be increased by increasing the radar
power. Finally, the physical principle in turbulence measurement by radars is the backscattering of
the beam by inhomogeneities in the radar refractive index that are the same scale as the
wavelength (a VHF radar operates typically at 50 MHz, or A = 6 m, which is assumed to be within
the inertial range of turbulence). Note that the backscattering results from refractive index fluctua-
tions at radar wavelengths, not optical/IR wavelengths. For radar wavelengths, the refractive index
fluctuations are dominated by humidity fluctuations, while for optical/IR wavelengths, the
temperature fluctuations are dominant. To convert from radar to optical turbulence requires the
measurements of pressure, temperature and humidity. The traditional approach has been to use
nearby rawinsonde profiles. These are low resolution (about 1 km vertically) and are not in the
same volume. This is a serious drawback if the goal is to use radar to characterize an optical path.

Balloon-borne measurements of optical turbulence have been made for some time*. The
prevalent technique involves the measurement of temperature fluctuations. Since optical refractive
index fluctuations arise entirely from temperature fluctuations, these methods provide a direct
measurement of C,2. A further advantage of these measurements is their ability to simultaneously
measure meteorological and wind data through the inclusion of a standard radiosonde in the in-
strument package. The vertical resolution of these methods is determined by statistical estimation
considerations and is typically of the order of 50 meters. A major problem with these in-situ meth-
ods is that they are not made along any optical path, but rather a path determined by the wind. A
second drawback is that, although they provide the highest spatial vertical resolution, balloon-
borme measurements also provide the poorest temporal resolution; a balloon flight takes on the or-
der of an hour. Finally, daytime measurements in the stratosphere and upper troposphere present
problems? that are likely attributable to solar heating of the temperature probes.

Most passive optical measurement techniques utilize stars as sources and measure some tur-
bulence effect on the propagation of the starlight. Thus, a stellar scintillometer measures the star’s
intensity fluctuations in a telescope aperture to infer C, 2; an isoplanometer measures isoplanatic
angle from a star; and an MTF device measures the transverse coherence length, r,, by measuring
the blur circle of a star’s image in a telescope. These are the most widespread techniques for
measuring the vertical structure of turbulence. In principle, they are capable of performing tur-
bulence measurements along an optical path provided there is a conveniently located star. All
these techniques are capable of high temporal resolution, limited only by the statistical estimation
requirements. However, both the MTF and isoplanometer measure a moment or integral of C 2
they provide no information about the distribution or layering of turbulence. Thus, their altitude
resolution is nonexistent. The scintillometer does provide some altitude-resolved information, but
the altitude resolution is poor, of the order of a few kilometers. Further, scintillometers tend to re-
quire averaging times of the order of 5 or more minutes. A serious drawback of the scintillometer
is its inability to measure turbulence in the first kilometer, a very important region as described
earlier. Another limitation of the scintillometer is its restriction to night operation. Both the
isoplanometer and the MTF devices have been adapted for daytime use as well.

“Brown, J.H., Good. R.E., Bench, P.M. and Faucher, G. (1982) Sonde Measturements for Comparative Measurements of Optical Turbulence,
Air Force Geophysics Lab., APGL-TR-82-0079, ADA 118740, NTIS.

SWalters, D.L.. Weitekamp, M.R., Beland, R.R., Good, R.E. and Murphy, E.A. (1990) Single Probe Optical Turbulence Profile Measurement
System, Symposium on Propagation Through Turbulence, Annusl Meeting of the Opt. Soc. Am., Boston, MA, November 4-9.




This survey of various measurement techniques is intended to present the capabilities and
limitations of the various approaches. It emphasizes the methods currently in routine use for atmo-
spheric characterization. The survey is not complete, as there are other methods that have been
used. One proposed optical technique uses the scintillation from a satellite-based light source for
C,2 profiling®. Another optical technique that has been presented in the literature utilizes scintilla-
tion from binary stars to obtain C,? profiles with up to 1 km vertical resolution’. Due to the rarity
of binary stars, this technique is limited and cannot be used to measure along a specific optical
path. A variation of this technique will be discussed in more detail subsequently in the context of
lidar methods. The purpose of this survey has been to demonstrate the capabilities and limitations
of existing methods and to show that there is currently no method capable of measuring C,? along
a specific optical path with sufficient spatial and temporal resolution.

3. LIDAR APPROACH TO MEASUREMENT OF Cn2

Given the requirement of characterizing a specific optical path, the use of lidar is an obvious
candidate. Lidar methods fall under the category of active optical techniques. The generic lidar ap-
proach to any atmospheric measurement is to use a laser pulse that is range gated at the receiver so
that the time of arrival of the pulse at the receiver determines the altitude of the backscatterers. A
one microsecond pulse gating is typical of lidars and translates into a 150 m vertical resolution. In
effect, this receiver gating allows us to treat the lidar as an array of sources separated by 150 m
along the optical path.

A general formulation of a lidar approach to C,? measurement will be presented. A lidar sys-
tem will measure some optical effect, say g, from the gated retumn at altitude z,. In general, the ef-
fect g will be determined by the entire optical path from the transmitter (z = 0) to the backscatterer
(z = z;) and then back to the receiver (z = 0). The optical effect can be written as an integral along
the optical path:

zZ;
2() =f0 C,(h) W(k,z,h) dh, (1)

where W(A,z,,h) is the particular optical effect’s path weighting function at wavelength A, ob-
served at z = 0 and backscattered at z,. The weighting function measures the contribution to this
effect arising from optical turbulence at z = h. We can write this down as a sum of integrals over
the range gates as:

1 zj
g8z) =2 f C,2(h) W(A,z,h) dh

=1 7z,
i z

=X c,,2(z,.)f ' W(Az;h) dh, 2)
=1 Zj.

)

K rause-Polstorff, J. and Walters, D.L. (1990) Refractive turbulence profiling using an orbiting light source, Appl. Opt., 29:1877- 1885,

7Azoui¢, M., Vemin, 1., Berletti, R., Ceppatelli, G., Righini, A. and Speroni, N. (1980) R t ing of at pheric turbulence by means of
a fast optical method: A comparison with simult in situ ts, J. Appl. Meteor., 19:834-818,




where C,%(z)) is the weighted-average C,? over the altitude bin (z;.,,z;) defined by

2.
f ' C,2(h) W(A,z,h) dh
z, 3)

C,lz) =
g
f W(A,z,h) dh
Z.

Strictly, we should write C %(z, ;+Z;) to show the dependence on z,. However, the dependence of the
weighted average on z; is assumed to be weak over the range (z; ,,z;). Additionally, if C, 2 is con-
stant over ( 1% ), the dependence disappears and it will be assumed that C, 2 is constant over
(zj_,,zj). This last form allows us to write the result in the suggestive matrix form

gz)= ‘il W, C,(z)), 4)
or in terms ot! :ectors G and C and matrix W:

G=WC, 5
where the matrix W has elements W;; defined by

W= f W(A,z,h) dh, (6)
j i
and the vector elements of (; and of C are g(z,) and C 2(,, ), respectively. The solution giving
C 2(z ) in terms of the measured quantities g(z;) is then foxmally given by:

C=W'G. M

The formulation is readily extended to included measurement errors in terms of an error vector e.
This yields a formal least squares type problem whose solution properties are the critical question.
The numerical stability and problem of ill-conditioning are of central importance. In general, the
matrix W has elements that satisfy

W, =0forj>i. (8)

This simply states that turbulence at altitudes higher than the backscatter volume has no effect. All
the upper half matrix elements are zero and the formulation gives a triangular system of equations.
The formal solution of this system of equations is given by®

C.2z) = W' [g@) - Z W, C,Az)). )
j=1
There exist two broad approaches to turbulence measurements via lidar. The two cases are
where the optical effect arises from phase distortions and where the effects arises from amplitude

'D-hlquial. G. and Bjorck, A. (1974) Numerical Methods, Prentice-Hall, Englewood Cliffs, N.J.




distortions; these are considered in turn. To simplify the discussion, it is assumed that the back-
scattering volume has a cross-sectional area (tranverse to the propagation direction) that is suffi-
ciently small so that it can be considered a point source. The complexity of finite backscatter spot
size, although important in describing the optical effect, is not important in this treatment, as we
are presenting "first order” considerations. The second major simplifying assumption is that there
are no turbulence effects on the uplink; that is, turbulence only effects the downlink propagation
from the backscatterers to the receiver. This is clearly unrealistic, but again, we wish to discuss is-
sues associated with a "first order” approach. The effect of these two assumptions is that we are
addressing the following problem: we have a linear arrray of point sources separated vertically by
a distance A, and we seek to determine C,? vertically from this array.

Consider first a phase process, chosen to be image dancing for concreteness. For a point
source at z observed by a receiver located at 0 and of diameter D , the mean square wander, <6°>,
is given by

y A
<dz)>=291 2D'" J;) C.xn) [1-(11/2)]5’3 dn. (10)

The expression gives the wander measured in the focal plane of the receiver of focal length f, pro-
vided the receiver diameter is within the inertial range. In our formulation, we have that

g(z,) = <8%(z,)>, (11)

%
Wi = f W(A,z;h) dn
Z;.

'j-1

Z-
=291 D3 f ’ [1-(11/z)]5/3 dn. (12)

zj_ l

This can be evaluated explicitly to give
W, =291 £ D' 328) {[1-z;./12)]* -[1-zy2)]*?}. (13)

A case of special interest is where j<<i, that is, the altitude range bin is far from the backscatter
region. An expansion yields

W;=2.91 2 D7 (z;-2.,) = 2.91 £ D'P A, (14)

where A = (zj - z,-_,) is the width of the range gate. Note that the matrix elements far from the
diagonals do not depend on i or j.

The other case of special interest is the first bin in front of the source. This gives one of the
diagonal elements of the matrix W, that is, the element W .:

W,=1.092D"zBAM =109 2D AR, (15)
where z, = iA. The formal mathematical problem with this method is apparent from the following.

Consider the ratio of the diagonal element W;; to an off diagonal element W;, where j<<i. As an
example, let A = 150 m and let z, = 10 km. Then




Wy/W, = 0.375 (A/z)* = 9 x 10, (16)

The peculiar property of the matrix is that a diagonal element is smaller than any other element in
its row. The diagonal elements can be smaller by several orders of magnitude This results from
the physical path weighting, whereby the path is weighted the least in front of the source, zero at
the source and increases with distance away from the source.

The numerical problems in this method readily exhibit themselves. Atmospheric turbulence
(and hence phase distortions) varies by four orders of magnitude from a C,? value of about 10!
near the ground to 107 in the troposphere. Optical turbulence can vary by as much as 3 orders of
magnitude in the troposphere, depending on whether there is a strong turbulent layer present. The
combination of the range of turbulence with the wide range in the matrix W requires a dynamic
range of more than 107 in the receiver detector to avoid the numerical problems. Alternatively, the
dynamic range requirements can be reduced by limiting the resolution.

Although this calculation has been performed for a specific phase effect, similar results will
likely arise for other phase effects as well. The problems arise from both the path weighting prob-
lem and the sensitivity of phase effects to large eddies. These two effects are closely related. An
alternative approach that avoids the dominance of large eddies involves those effects based on
scintillation. For a point source at altitude z,, the variance of log-amplitude observed by a receiver
on the ground is given by:

O'xz(zi) = (.56 k'’ J: an('ﬂ) Q) /zi)5/6(zi_n )5 dn. an

Note that the weighting is zero both at the receiver and at the source and is symmetric about the
path midpoint. Exactly as in the phase approach, we can construct a set of triangular equations
corresponding to a range-resolved lidar measurement. The resulting matrix W gives rise to the
same numerical issues as the phase example.

A further complication arises for both these first-order approaches if the uplink effects are
included, that is, the propagation from the laser to the backscattering region. In the case of the
phase measurement of angle of arrival, the uplink propagation produces beam wander at the back-
scattering altitude z,. For a collimated transmitter of diameter a, the mean square wander at z, is
given for propagation from z=0 to z, by’

<p>=6.08z2a' ri C,%(h) dh. (18)
0

The illumination of the backscattering region is changing as a result of the beam centroid wander.
The image of the backscattered spot wanders in the image plane as a result of the uplink beam
wander and the downlink image dancing. Clearly, the uplink propagation modifies the path
weighting function. The modification is not a straightforward sum of the uplink and downlink; the
up and down paths are nearly identical, and strongly statistically dependent. Since turbulence can
be regarded as frozen over the propagation time, the entire propagation occurs within an
isoplanatic patch. The downlink performs, to some degree, a phase conjugation of the uplink phase
distortions, thereby reducing the dancing. If instead of backscattering, a retroreflector is used at

%Sasiela, R.J. (1988) A Unified Approach to Electromagnetic Wave Propagation in Turbulence and the Evaluation of Multiparameter Integrals,
Technical Report No. 807, MIT/Lincoln Laboratory.




altitude z;, the down beam would be a phase conjugated version of the up beam and nearly perfect
conjugation (except for diffraction) would be observed at the detector with almost no wander. For
backscattering, the down beam is a spherical wave (or incoherent superposition of spherical
waves) while the up beam is a collimated, partially coherent beam wave. The conjugation is less
than perfect. This is a difficult problem whose solution has not been achieved. It is clear that the
path weighting function has been modified to a considerable extent by the inclusion of the uplink
propagation.

If this overall path weighting function were known, it is still likely that certain difficulties in
a phase approach would remain. The problem of greatest concem is the requirement of very large
dynamic range. As the above equations show, angle of arrival fluctuations are directly propor-
tional to C,%; since C,? varies by more than 10*, so do phase effects. In addition, phase effects are
dominated by large turbulence, which occurs near the aperture and in the boundary layer.
Measurements from backscattering above the boundary layer will include these large distortions,
and the contribution from above the boundary layer will be swamped by the larger contribution
from below.

Closely related to these problems are the noise sources inherent in a phase measurement ap-
proach. One source is laser instabilities that contribute a jitter to the propagation. A second source
is mechanical vibration in the transmitter or receiver that also contributes a jitter and resuits in
some image dancing. In the presence of noise, the numerical considerations of stability become of
great importance.

The value of scintillation-based approaches is that some of the problems inherent in the
phase approach are not significant. The uplink wander of the beam does not matter, provided the
spot remains in the detector field of view. The same considerations apply to other sources of jitter,
such as laser instabilities and vibrations. The central concept in log-amplitude based approaches is
that they are insensitive to the large scale sizes and the important scale is the Fresnel scale, given
by (Az)'2, which is typically of the order of centimeters. Scintillation along an optical path is not
dominated by the largest turbulence, but by a combination of the value of C,2? and the turbulent
layer’s Fresnel scale.

A key issue in scintillation is that the conjugation considerations of the up and down links
are a negligible consideration. This is not to imply that scintillation approaches are not affected by
the uplink propagation. The uplink propagation results in intensity fluctuations of the light inci-
dent on the backscatterers. There are two aspects to this effect. The first is the fluctuation of the
total incident energy on the backscatterers. Scintillation approaches tend tv calculate the mean
square average of the log intensity or log amplitude and for weak scintiliation, these can be shown
to be virtually the same as the normalized intensity variance. The approach performs a normaliza-
tion for the overall intensity fluctuation. The second aspect pertains to scintillation within the fi-
nite spot size of the beam at the scatterers; the uplink scintillation will result in intensity hot spots
at the scatterers. The problem is that of scintillation from an extended source. This problem is a
second order effect and is discussed in the following. Closely related is the important problem of
the beam broadening due to the uplink distortions. This reduces the overall scintillation and
changes the path weighting. Indeed, the use of different size sources and receivers is a fundamen-
tal design principle in the horizontal scintillometer and its variants'®. Certain effects resulting from
beam broadening can be described. The path weighting function for scintillation is a broad peak,

"®Ochs, G.R. and Wang, T. (1978) Finite aperture scintillometer for profiling wind and C,%, Appl. Opt., 17:3774-3778.




with zeroes at the transmitter and receiver. The location of the center of the peak may be changed
by adjustment of the receiver and transmitter diameters, but the peaks will remain fairly broad and
the overall scintillation will be reduced from the point source and receiver case. Furthermore, a
practical lidar system places severe constraints and limitations on the amount of adjustment pos-
sible in the receiver and transmitter diameters. These considerations will result in the previously
stated numerical issues: a very large dynamic range in the receiver is required. Very limited
altitude resolution would be achievable.

4. THE CROSSED PATH TECHNIQUE

The ideal lidar measurement method would be based on an optical property that has a very
sharply peaked path weighting function and would be minimally effected by laser instabilities,
system vibrations and uplink beam wander. It would also measure an optical effect that yields a
reasonably strong signal. The first requirement insures numerical robustness. It has also been sug-
gested in the previous section that a phase-based approach would not meet any of these require-
ments and even if the phase conjugation theory for the uplink/downlink problem were completed,
the sensitivity to system jitter would remain. It appears that a scintillation-based approach holds a
higher degree of promise of success.

An approach is presented that uses a scintillation method and produces a sharp path weight-
ing function. This approach is an adaptation to lidar of the binary-star methods for passive remote
sensing”"!!. The method was also suggested'? as a means of remote sensing across a horizontal dis-
tance and a variant has been used to measure turbulence in fluid flow'*. The strength of the meth-
od is that the path weighting is determined by geometric factors. In Figure 1, two parallel beams,
separated by a distance S,, are backscattered at an altitude z. The backscattered spots are viewed
by two receivers of diameter D, separated by S, in such a way that their viewing paths cross. If the
altitude of the backscatterers is given by z, geometric considerations show that the two observation
paths cross at an altitude h given by

h = Sz/(S+S,) = z/(1+S,/S). (19)

This simple equation demonstrates the relation between the backscattering altitude, the crossing
altitude and the receiver and scatterer separations. The second form shows that it is the ratio of the
backscatter and receiver separation that determine the crossing altitude. In a lidar implementation
based on this approach, there is considerable flexibility in adjusting these parameters.

Each receiver measures the fluctuating intensity from one of the sources and this scintilla-
tion is determined by the optical turbulence along the entire path. However, if the correlation of
the intensities at the two receivers is measured, it is determined solely by the turbulence in com-

"Vernin, J. and Pelon,J. (1986) Scidar/lidar description of a gravity wave and associated turbulence: preliminary results, Appl. Opr., 25:2874-
2877.

uWang. T., Clifford, S.F. and Ochs, G.R. (1974) Wind and Refractive-Turbulence Sensing Using Crossed Laser Beams, Appl. Opt., 13:2602-
2608.

l3Fisl\er. M.)., and Krause, F.J.(1967) The crossed-beam correlation technique, J. Fluid Mech., 28:705-717.




mon, that is, the turbulence in the volume of overlap of the viewing geometries. It is clear that the
path weighting function for this correlation is sharply peaked at the center of the volume of over-
lap, given by h, and is essentially zero outside of this. The geometry can be used to provide insight
into the parametric dependencies of the width of the weighting function and hence the altitude
resolution of the technique. If A, and A, are respectively the lower and upper limits of overlap as
shown in Figure 1, then

A, = D(z-h)/(S+S,-D),
(20)
A, = D(z-h)/(S+S4,+D).

Since in practice, the receiver diameter would be smaller than the other horizontal dimensions, the
approximation D << §, S, shows

A=A, = A, =D@z-h)/(S+S,). @21)

Source 1 Source 2

Receiver | Receiver 2

Figure 1. Geometry of crossed path technique. The viewing paths of the two receivers are crossed
as shown. The two o itgoing lidar beams are not crossed and are shown by the dotted lines.
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This is equivalent to assuming that the spherical spreading of the light is negligible over the
volume of overlap, and thus the light cones from the sources can be treated as cylinders in the
crossing region. As a numerical example, consider backscattering from a 10 km altitude. If the
source and receiver separation are 1 m, the crossing altitude is 5 km and a 10 cm receiver gives a
geometric overlap of +/- 250 m. The vertical resolution is 500 m.

It should be emphasized that these geometric relations are primarily heuristic and are given
to demonstrate the parametric dependencies and semi-quantitative behavior of the solution. A
more thorough and formal solution based on the Rytov theory is presented shortly. The geometric
theory provides only semi-quantitative information about the path weighting function and its
width, while the Rytov theory specifies the function completely. For the numerical example just
given, it will be shown that the Rytov theory yields much sharper path weighting, and hence high-
er resolution, than the geometric theory.

4.1 Theory of the Crossed Path Technique

This section demonstrates the key relationship between the intensity covariance, which is the
measurable quantity, and the covariance of log amplitude, which is related to the crossing volume.
Let I, and 1, be the intensity received by the two detectors shown in Figure 1. In the more general
case, both sources are in the field of view of the two receivers. This minor complication is ac-
counted for later. In the present derivation, we assume that each receiver sees only one source and
that the observation paths cross as suggested in Figure 1. The covariance between the two
receivers separated by S is

Ci(S) = <(I;-<I>)(I,<I,>)>
(22)
=<0, I,> - <I;><1>,
where the brackets indicate ensemble averaging. By definition of log amplitude, ), we have that

I(xy) = Loy (x,y) e2X1 ), (23)

where I;,(x,y) is the intensity at (x,y) in the absence of turbulence. The analogous relation exists
for L,(x',y"). Upon substitution into the covariance, we get

CI(S) — Im(X,Y)Ioz(x';y'){ <e2[XI(st) + L(x sy')]> - <62XI(X;Y)> <CZXZ(X'»y )>}, (24)
where S is the distance between (x,y) and (x',y’). There is considerable theoretical and experimen-
tal evidence that in the weak scintillation case ) is a normal (Gaussian) random variable from
which it follows that

2
<I>= Iﬂ<e2x> = I(,e2<7(> *+20,", (25)

where oxz is the variance of log amplitude. Since both X, and %, are normal, so is their sum, ¥,
and we have that

11
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<oy = o2<US>+ Zoxf , (26)
where

<> = <Y+ <Y (27)
and

0,:=02+0.2+2C(S). (28)

This last form introduces the covariance at a separation S of the log amplitude at receivers 1 and 2,
C,(S), which is formally defined by

Ci(S) = <1 - AP>NA2 - <A2>)>
(29)
= <iX2> - <K 1><N2>-

Putting these results together yields

2 2
ey = o 2N1>+2<Y>+20, +20,/+4C,(S) 30)

Substituting these results produces

2 2 2 2
CI(S) = Io|102 {62<X|>+2<X2>+20'x1+20’x2+4Cx(S) - C2<x'>+2<X2>+201|+2012}
2 2
=Ly oz 62<x'>+2<xz>+2°xl+2°xz{e4cx(s) - 1}

= <I,><Iz>{e4cx(s) - 1}. 3D
Approximating the exponential for weak scintillations gives
Ci(S) = 4<I><I> Cx(S). 32)

This is a key equation in our formulation which demonstrates that the intensity covariance be-
tween the two receiver outputs is reduced to the problem of evaluating the log amplitude
covariance. It is worth emphasizing that this derivation requires only the assumption of normality
of the log amplitude. Fried'* performs the same derivation but also includes the requirement of
conservation of energy. Since optical turbulence does not dissipate the optical energy, conserva-
tion of energy is implemented by requiring that <I> = 1,, which in turn implies that for log normal
variables, <y> = -oxz. As the above derivation shows, the relation between the covariances of in-
tensity and log amplitude does not require that conservation of energy be utilized. It is clear that
this restriction on <x> conflicts with the Rytov approximation which produces <x> = 0 and the
normality of . The Rytov theory is only an approximation resulting from a perturbation expan-

“Fried, D.L. (1967) Aperture Averaging of Scintillations, /. Opr. Soc. Am., 87:169-175.
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sion while the requirement of conservation of energy is exact. Mixing different orders of approxi-
mation in theory is to be avoided since it may lead to contradictions. Since the theory of the
crossed path technique is to be developed from the Rytov theory and the conservation of energy
requirement is unnecessary, only those assumptions that are part of the Rytov approximation are
assumed.

Before tuming to the derivation of the log amplitude covariance, it is shown that the theory
is readily expanded to accommodate the complication of both sources in the field of view of both
receivers. Let I, and I, denote the total intensity in receiver 1 and 2 respectively. In the case of in-
dependent sources, the total intensity results from an incoherent superposition of the individual
fields:

IL=1,+1,, 33
(33)
L=1+1,

where Ij; is the intensity from the j™ source at the i receiver. Substituting and performing algebra
yields the following form for the covariance of the intensity between receivers 1 and 2:

C(S) = <|I,> - <I;><I> (34)
= [<I| a>-<I, |><12|>] + [<I|2122>'<112><122>]

In this expression, the terms have been grouped suggestively. The first term is the covariance of
source 1 at receivers 1 and 2. This is the same as the covariance of source one for two points in the
observation plane separated by S (if the receivers are regarded as point receivers). Now, the in-
tensity covariance of a turbulent layer goes to zero for separations larger than the Fresnel scale'*.
The receiver separation, S, will in practice be of the order of a meter, while the Fresnel scale of
any turbulent layer will be of the order of centimeters. Therefore, it is to be expected that in the
lidar formulation, the first term is small. Similarly, the second term is the covariance of source 2 at
a separation S, and is also small. The third term is the crossed path term,; it is the covariance of
source 1 at receiver 2 with source 2 at receiver 1. It is given by the earlier result:

<I,,ly>-<1><I;y> = 4l 5, C(S). 35

The last term is the covariance of source 1 at receiver 1 with source 2 at receiver 2. This is the un-
crossed path, and represents the covariance of independent sources. Again, provided the paths are
separated by more than a Fresnel scale, this term is also very small. Thus, in the lidar implementa-
tion, the additional terms resulting from both sources in the field of view of both receivers are ex-
pected to be small. The smallness of these terms in the above arguments is relative to their respec-
tive maximums, and not relative to the magnitude of the crossed path term. Although the above

Clifford, S.F. (1978) The Classical Theory of Wave Propagation in a Turbulent Medium, Chapter 2, in Laser Beam Propagation in the Atmo-
sphere, J.W. Strohbehn, Ed., Springer-Verlag, New York.




arguments indicate that in a lidar implementation it does not matter whether both sources are in
the field of view of the receivers, this claim will be addressed in a more quantitative fashion in a
subsequent section. This robustness is a very desirable property. Because of this property, all the
following derivations will assume that only one source is seen by each receiver. In contrast, the
binary star technique uses receiver separation of the same order or smaller than the Fresnel scale,
so the additional covariance terms must be included.

4.2 Rytov Theory for the Weighting Function

The theory of the crossed path technique has been reduced to that of the covariance of the
log amplitude for the propagation. The Rytov solution to the wave equation is written in the gener-
al form'®

W) = K2RE(r)] ! f%{;"" n(t') Eo(r') dr, (36)

where Y = + i¢,  is the log amplitude and ¢ is the phase and thus, % = Re(y). In this equation, k
is the optical wavenumber (2r/A), ¢ is the vector observation point, E(r') is the source amplitude
at r', and n,(r') is the refractive index fluctuation at r'. By definition of the refractive index fluc-
tuations, <n,(r')> = 0, from which it follows from the Rytov approximation that <y> = <x> = <¢>
= (. Thus, the covariance of the log amplitude reduces to

C,(S) = < x> 37

If the distance to the observation point is greater than any lateral dimension in the problem,
the Fresnel approximation can be applied and so the Rytov solution can be written in general as

w(r) - k2[2nEo(r)]-| fe(ikip - p')Z/[Z(Z-Z')] nl(rv) eik(Z'z') Eo(rv) dl", (38)

where p is a vector in the plane transverse to the direction of propagation, which is taken to be the
z-axis. The source is specified by Ey(r), the source amplitude observed at vector r. For a point
source, located at vector ry,

iklr-rol
mr-ry

Eyr)=E, (39)

If the point source is located at z = 0 and transverse vector p,, the Fresnel approximation can also
be applied to the source to give

Eq(F) = i_lkz Klp- po|2/2z 40)

"STatarnki, V.1 (1961) Wave Propagation in a Turbsulent Medium, McGraw-Hill, New York.
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Substitution into the Rytov solution gives
3 - 2 3 -0 2 ' 3 ' 2 (]
y(r)=(k*2r)z e iklp-poi/2z | (iklp )p Fi2(z-z) elkIP"-Pol/2z n,(r') dz'dp’". 41)
z(z-z
After some tedious algebraic manipulation, it can be shown that

Ip-pol/z + Ip-p'*(z-Z') + Ip'-pol¥/z’ = Ip'-yp+(1-)pol*iNz-2), 42)
where we have introduced y = z'/z. Making this substitution gives
w(r) = (k*2m) J i:':""YP'(l-'Y)PoP/ZY(Z-Z') n,(r') dz'dp". 43)

To simplify this further, the spectral expansion for the refractive index fluctuations is introduced:
n(p.2) = [ dvik,2) K, (44)

where K is the two-dimensional vector spatial wavenumber. If this substitution is made, the fol-
lowing integral over p’' results:

I = f eiK-p eik'P'-'rP-(l-'Y)p o 2Az-2) dp'. 45)
By a change of variable to p, where p. = p'-yp-(1-Y)p,, this becomes
1, = K OP+(1-1Ipo] f (JAKp. ikip.P2Y(z-2) 4 0. 46)
= 2n KOPHIDR (1 o) kP22 g (@7)
= 2n K IPHIDPOl { 1y 5y e TVEZIKY2K ) 48)

The first step in this integration converts the integral over vector p into an integral over scalar p
and angle. This allows the introduction of the zeroth order Bessel function via its integral repre-
sentation'”. The next step is performed by recognizing that the integral is in the form of a Fourier-
Bessel (or Hankel) transform of a Gaussian'®. Using this result, we have the general Rytov solu-
tion for a point source at arbitrary vector position, p,, in the plane z = 0 and observed at position
vector r = (p,z):

W) = ik f dz f dv(K z) el K OPHI-1)Po] -iv(z-2)K¥/2k (49)

""Mathews, J. and Walker, R.L. (1970) Methods of Mathematical Physics, 2™ edn., W.A. Benjamin, Reading, MA.

*Bracewell, R.N. (1978) The Fourier Transform and Its Applications, 2™ edn., McGraw-Hill, N.Y.
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where the real part provides the log amplitude. Note that a point source at the origin, p, =0, gives

the expression usually stated as the Rytov spherical wave solution. It follows from this that the log
amplitude is given by

x() = (1/2)[y + '] (50)

=k fdz'f dv(K z) e PNl G [hr 7K 272]. (51)

The requirement that the refractive index fluctuations be real is used to obtain the last expression.
Specifically, the realness of n in the spectral expansion implies that

dv(K,2) =dv’(-K,2). (52)
The Rytov solution for each receiver can be written as
y, =x(r) =k fdz'f dv(K 2) e K PPl il K 272k], (53)
X2 = X(r) =k fdz"f dv(K',z") el K TPHIVPo ginl vz 2k 272k]. (54)
where Y=2"/z. The subscripts are chosen to emphasize the crossed path: source 2 is measured at
receiver 1 and source | at receiver 2. Taking the product of these two expressions and performing
ensemble averages gives
<X x> = k? f dz'dz" J. <dv(K,z')dv(K'z")> (55)
K[, H(1-Y)po,] sin[y(z-z')KZIZk] eiK'[YPz+(1'Y)PO|] sin[Y(z-z")K'z/Zk].

The rest of this derivation follows exactly the ordinary spherical wave solution'® and will not be
explicitly done here. The result is

<> = 2nk? fdz' de D, (K 2) e R PrPIHINPorPoll Gi2[yz 2 )k2/2k],  (56)

where @ (K,z') is the three-dimensional turbulence spectrum. For the Kolmogorov spectrum, this
is

@, (K,z)=0.033 C 2(z) KA, (57)
Finite inner and outer scale effects can be included by using the modified von Karman spectrum

®,(K,z) = 0.033 C X(z) [K? + Ko} ' exp(-K¥/K_ 2), (58)
where K| is related to the inner scale, 1, by K, = 5.92/1, and where K,, is related to the outer scale,

Ly, by Ky=2r/L,. Note that we have implicitly assumed that neither the inner nor outer scales vary
with altitude.

Ylshimaru, A. (1978) Wave Propagation and Scattering in Random Media, Vol. 2, Academic Press, N.Y.
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The expression for the log amplitude covariance can be further simplified by using the fact
that the turbulence spectrum depends only on the magnitude of K. Consider the integral:

L= Jdl( o, (K,z) elK*P- sinZ[y(z-z')Kzﬂk], 59

where we have defined p. = Y(p,-P2)+(1-Y)(Po.-Po1]. The vector K is a 2 dimensional vector in the
plane transverse to the propagation direction. Let the direction of the vector p. define the angular
coordinate 6. We have

= fde fK K ®,(K.z) e XP*05) inolnz 7)K?2k] (60)
=2n fK dK ®,(K,2) Jo(Kp.) sin{y(z-z)K?/2k]. (61)
The log amplitude covariance is

< X> = 4nPk? f dz J. K dK @ (K,z) J,K|YP -p )+ (1-V)Por-Por))) sinz[y(z-z')KZ/Zk] (62)

This expression can be simplified through the specification of the vector positions of the
receivers and backscattering sources for the crossed path geometry. The receivers and sources are
assumed to be symmetrically located about the origin of the transverse plane. Furthermore, it is as-
sumed that the two sources and the two receivers are coplanar. Without loss of generality, we can
define the sources and receivers to lie on the x axis. With reference to Figure 1, we have:

P =P

Por = -Po2

p, =8S/2

Poz = So/2. (63)

If we specify the turbulence spectrum as

D,(K,z) = C,(z) Do(K), (64)

we have
<> = 4nk? fdz' CXz) f K dK @,(K) Jo(KWS-(1-7)Sq)) sin?[y(1-y)zK?/2k] (65)
= fdz' C Xz) W(Z'2), (66)

where the substitution (z-z') = (1-¥)z has been made. W is the path weighting function defined by
W(Z'z) = 4n%k? fK dK @(K) Jo(KS-(1-PSq)) sin[y(1-y)zK?/2k]. (67)

The behavior of the weighting function can be inferred from the characteristics of the in-
tegrand. In Figure 2 the log amplitude spectrum, F, is plotted where
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F(K) = 4n%k? K ®,(K) sin?[ y(1-p)zK?/2k), (68)

and ®,(K) is given by the modified von Karman spectrum. As is evident from the figure, the spec-
trum is insensitive to large scale sizes, a desirable feature of any scintillation-based effect. The sin?
term serves to attenuate the contributions from the large scale sizes. Also noteworthy is the broad
peak in the inertial range, with a maximum approximately given by the first maximum of the sin?,
that is,

K, = [rkAy1-1)2] 2 = 2r [2091-1)2] 2. (69)

This wavenumber corresponds to the Fresnel scale, 1, for the spherical wave case. Using a
wavelength of 0.5 um, this scale yields a numerical value of 5 cm for z = 10 km, z' = 5 km. Above
this scale, the log amplitude spectrum is rapidly attenuated by the turbulence spectrum and the
largest contribution to the spectrum comes from Fresnel scale turbulent eddies. A smaller contri-
bution comes from larger scales in the inertial range, but there is negligible contribution from
smaller scales. Above this scale the spectrum has very rapid oscillations due to the K? argument of
the sine.

The crossed path effects enter via the J, term. Since the log amplitude spectrum is a positive
quantity, it follows that the integral is a maximum when J; is a maximum, that is, when the argu-
ment of J, is zero. This condition is satisfied when

103

3
3

F

Figure 2. Log amplitude spectrum for the crossed path geometry. The spectrum is calculated using
an outer scale L, of 10 m, an inner scale 1) of 1 cm and A = 0.5 pm. The backscattering altitude is
10 km and the point sources and point receivers are each separated by 1 m. The crossing altitude
that results is 5 km and the corresponding value of the Fresnel scale L is 5 cm.
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1S = (1-9)S,, (70)
or, solving for z', the maximum is achieved when the path position, denoted by h, is given by
h = Sz/(S+S,) = z/(1+S,/S). an

This expression is identical to the geometrical crossing altitude, as shown in Figure 1. The weight-
ing function is a maximum at the crossing altitude; the geometrical theory and the more exact
treatment agree. Note that the location of the peak depends only on the ratio of the receiver separa-
tion and backscatterer source separation. The crossing occurs at the path midpoint if these are
equally separated.

The full weighting function is plotted in Figure 3 for backscattering from 10 km and equal
source and receiver separation given by 1 meter. It should be emphasized that this is the point
receiver and point backscatterer case. The weighting function is very sharply peaked at 5 km and
appears to be negligible at less than 4.5 km and more than 5.5 km. In Figure 4, the vicinity of the
peak is shown on an expanded scale and the absolute value of the weighting function is plotted.
From this figure, it is clear that the weighting function has a 1/e width of the order of 175 meters.
The weighting function also exhibits a very rapid decay; beyond about 300 m from the peak, the
magnitude is down by nearly a factor of 100 or more, and beyond 800 m, it is down by about 1000
or more. This width does not depend solely on the ratio of the receiver to source separations, but
also on their numerical values as well. It would be satisfying if the geometric width of the weight-
ing function peak also agreed quantitatively with the exact theory. The weighting function width
depends in a complex way on the first zeroes of the Bessel function and no simple analytical ex-
pression for the width can be obtained. A more thorough discussion of the resolution of the
crossed path method is made after the theory is extended by the inclusion of finite source and
receiver effects.

The approach of the crossed path technique can now be summarized. Utilizing our earlier
results, it follows that

[4<t><1>] 1 €8) = <x x>
- (@ ci@ W) 72

The intensities are readily measured by photomultiplier tubes on the receivers. The average in-
tensities and their covariance are statistically estimated from the time series of each receiver’s in-
tensity. The measurements of the average intensities and their covariance is equivalent to the
measurement of a weighted average of C,? along the path. These characteristics are not unique to
the crossed path technique; the primary feature of the crossed path technique is the sharpness of its
path weighting function. As our numerical example shows, backscattering from point sources at
10 km with 1 m separation with point detectors at 1 m separation gives a measurement of the
weighted average of C, 2 in a 175 m layer centered at 5 km.
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Figure 3. The crossed path weighting function versus altitude for point backscatterers and point
receivers. The same numerical values as in Figure 2 are used.
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Figure 4. The absolute value of the weighting function is shown in the vicinity of the crossing
altitude of 5 km. The same numerical values as in Figure 2 are used.
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4.3 Finite Receiver and Source Effects

It is well known that scintillation effects are reduced by receiver aperture averaging. In-
tensity fluctuations are also less from an extended source than from a point source. The extension
of the weighting function to include finite source and receiver effects is essential to the design and
theory of a lidar C,2 measurement. First, the extension is made for the finite receiver effects. It is
assumed that both receivers are identical, circular apertures of diameter D, or radius R=D/2. The
measured quantity at each receiver is the integral of the intensity over the aperture

IT] = fIl(x,y) dxdy, (73)

where L1, denotes the total intensity and an analogous expression holds for I,. This is related to
the log amplitude by

Iy = flm(x,y) CZX(x,y) dx dy (74)
=1, fe2x(x,y) dx dy,

where we have assumed that the intensity in the absence of turbulence, I, is uniform across the
aperture. Proceeding as before, we have that

<I;p> =1, <e2XY); dx dy
=1,, 7R? <1, (75)

where the local homogeneity of y has been used, that is, <x(x,y)> does not depend on (x,y) within
the aperture and can be pulled out from the integral. The intensity covariance satisfies

CIT(S) = LI I1> - <l p><Ip> (76)
1L, J’ f dx dy dr'dy {<e2D0EN) + LTy | < 2DEY5 < halK Y5},
Using the properties of the normal distribution, it follows that
€S = [<tr><1p>/nR?Y?] ” dx dy dx'dy’ {e*CX=xYY) 1}
= [<IT,><IT2>/(RR2)2] f f dx dy dx'dy’ 4 C,(x-x"y-y"). an

Since C, = <x,x,>, it is clear that the critical quantity consists of the integral of <x,x,> over the
apertures. This is denoted by <),x,> and is given by

<X > = (TR?)2 f dx dy dx'dy’ <x,(x,y)(x"y')>. (78)

Note that it is normalized by the square of the receiver area. Interchanging the order of ensemble
averaging and integration gives
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<uitor= Ry <[ [ axdy yixy)] [ axay mexy] >. (79)

The problem is reduced to evaluating the integrated log amplitude at the apertures. Call these
quantities )1 and ), for the two receivers. These are given by the forms

Xir= (WRZ)"I dx dy x,(x.y), (80)

where the integral is over a circle of diameter D centered at the transverse vector p,. Substituting
for ), from our earlier results produces

Kx(ry) = K/(TR?) fdp, fdz'f dv(K,2) e R TP I-VPoal gin[oiy yaken]. (81)
The integral over p, inside the aperture can be evaluated. Consider the integral
L= fdp, KP. (82)

Converting from a vector integral to an integral over angle and the magnitude of p produces

13 =2r fpr dpr JO(K‘Ypr)

(83)
J,(KYR)
= 2R [ ]

where the integral has been evaluated using a property of Bessel functions. The effect of the
receiver aperture averaging is to include a further term in the integrand that behaves as
J,(KYR)Y/KyR. Using this result in our expression for x,r. v.c get

ir =2 [z avii.z) K TIP (1ot USR] iyt ek, (84)

Note that the scaling by the receiver area tR? has been can.clled out by our normalization. In the
following we will drop the subscript T on <),x,>. The derivation of <x,),> proceeds exactly as
before with the inclusion of this additional term in the integrand and the result is

2
<Y x> = 16m%k2 fdz' C.xz) fK dK Dy(K) Jo(KWS-(1-7)S,) sinz[Y(l-Y)Zzl'Zk ] [(K'YR) )]

(85)
This in turn defines a new path weighting function by

W(z'z) = 16772 fK dK ®g(K) J((KHS-(1-1)S,h sin?[y(1-y)zK?/2k] [ &) )]2. (86)

The J (x)/x term in the integrand acts as a low pass filter. Spatial wavenumbers satisfying K >>
1/(yR) are attenuated. The receiver aperture averaging reduces the scintillation and the covariance
by filtering or averaging out the contributions from scale sizes smaller than the aperture. A more
precise criterion can be stated using the 1/e point of [J |(x)/x]z. This value, 1.9, is used to define the
passband of the filter. S, ecifically, wavenumbers less than 1.9/YR will not be attenuated or
reduced by aperture averaging.

The receiver aperture averaging is a critical system parameter. A larger aperture is desirable,
as it increases the total signal received. It cannot be so large as to significantly reduce the scintilla-
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tion. These two criteria can be satisfied if the Fresnel scale eddies are within the passband. Specif-
ically, we require

2 [221-1)z] 2 < (1.9)AR @87)

be satisfied for the altitude, z', where the weighting function is peaked. Additional attenuation at
altitudes not in the weighting function peak does not matter. Altematively, this equation can be in-
verted to impose the requirement that the aperture radius, R, must satisfy

R < (1.9/2y) [20y(1-9)2] 2. (88)

In practice, the backscattering will not be from a point but from an area with non-zero cross
sectional area determined by the lidar beam width at the scattering altitude. The beam may wander
and be broadened due to the turbulence on the uplink. These phase effects will be discussed sub-
sequently. Here, the scintillation effects of the uplink are considered. The lidar beam at the back-
scatter altitude is assumed to have a diameter d (or radius a =d/2). The scintillation on the lidar
beam results in a fine scale speckle pattern of intensity within a circle of radius a. The intensity is
not uniform within the circle of radius a, but rather there are intensity hot spots of the size given
by the Fresnel scale. If the averaging time is longer than the wind clearing time for the largest
Fresnel scale hot spots, the speckle structure of the light incident on the backscattering region can
be ignored and the backscattering region can be assumed to be uniformly illuminated. This criteria
can be more precisely stated. The lidar beam is assumed to be collimated and locally approxi-
mated by a plane wavefront. If V is the wind speed transverse to the beam at z, the scattering
altitude, the averaging time T must satisfy

T> Az2)?/V, (89)

where the plane wave Fresnel scale has been used. For a 0.5 pm beam at 10 km, this requires that
the time be longer than 0.07 sec for a 1 m/s wind and 7 msec for a 10 m/s wind. These criteria are
easily satisfied. A

The illumination of the backscatterers can be regarded as uniform. In addition, the scattering
process is either Rayleigh scattering from air molecules or Mie scattering from aerosols. In either
case, the scattering process is incoherent. The net result is that the backscattering of an incident
beam of radius a can be treated as a uniform, incoherent source of radius a. The details of this cal-
culation are straightforward but tedious. Let I(x,y,r) be the intensity observed at (x,y,z) from a
point source located at vector position r in the z = 0 plane. For an incoherent source, observed at
(x,y,z), the total intensity Iy is given by the incoherent superposition of point sources:

I; = fl(x,y,r) dr, (90)

where the integration is over the source distribution volume. The same steps as for receiver aper-
ture averaging are followed to derive the effect of the finite source. The net result is the inclusion
of an additional term in the integrand for the log amplitude covariance, a term given by

J,(K(1-y)a)12
4[ K(1-y)a ] : _ on




The resulting log amplitude covariance, incorporating the effects of finite receiver and source, is
thus

<> = 64nK? fdz' C.A2) fK dK (K) Jo(KWS-(1-7)Sq)) [%(%%ﬂa)]z 92)
[ —é‘%YR)]z sin2[y(1-y)zK/2k).
This defines the overall path weighting function by
W(z2) = 64n2k? f K dK @y(K) Jo(KNS-(1-))S)) [%('zf—_(yl)';ﬁa)]z (93)

[-I-J{%—YR)F sin?[y(1-y)zK?/2k].

The effect of a source of radius a is the same as that of a receiver of the same radius, but
with y replaced by 1-y. The finite extent of the source results in filtering of the spatial scales con-
tributing to the scintillation spectrum and thereby reduces the scintillation. In order to keep this
reduction to a minimum, we again consider the 1/e point of the [J l(x)/x]2 term. This provides the
specific criterion that

2n [20y1-9)2) 12 < (1.9)/(1-)a (94)
be satisfied for all altitudes of interest. The requirement for the backscatter spot size is
a< 1.9/2r(1-9)1 [221-9)2] 2. (95)

The following examples are treated to provide some feel for the numerical constraints on
the receiver and backscatter spot size. The laser wavelength is assumed to be 0.5 um, the back-
scatter spot at 10 km, and the crossing altitude is 5 km. In this case neither the lidar spot at 10 km
nor the receiver radius can exceed approximately 3 cm without reduction in scintillation. It can be
seen that the allowable sizes increase as the square root of the backscatter altitude. For a 2 km
backscatterer and a crossing altitude of 1 km, the limiting size is about 1 cm. These are tight
restrictions. In Figure 5, the behavior of the weighting function in the vicinity of the peak is shown
for various aperture sizes for the usual numerical example. It can be seen that the effect of aperture
averaging is to cause both a decrease in the magnitude and an increase in the width of the peak.
The signal strength and resolution are degraded.
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Figure 5. The absolute value of the weighting function is shown in the vicinity of the crossing
altitude of S km for several values of aperture diameters. The same numerical values as in Figure 2
are used, except that the receiver and backscatter diameters are assumed equal and given by the
values shown. Note that the excursions to small values shown in Figure 4 are absent in the present
figure. This absence is a numerical artifact of the larger step size in z used in the calculation.

4.4 Inner Scale Effects

In the theory, one scale size has emerged that is of critical importance: the Fresnel scale.
However, the presentation has oversimplified one aspect of the problem; namely, we have as-
sumed that the inner scale of turbulence is 1 cm, a value less than the Fresnel scale in the calcula-
tions presented. In practice, the inner scale is not a constant, but is itself a function of both altitude
and turbulence strength. The distinction between the inner scale for velocity and temperature fluc-
tuations must be made in discussing inner scale. In all that follows, we will assume the inner scale
for temperature fluctuations. The inner scale for temperature, and hence refractive index, fluctuta-
tions is defined by?°

lo=17.4 (DVe)'™, (96)

PHill, R.1., and Clifford, $.F. (1978) Modified spectrum of atmospheric temperature fluctuations and its application to optical propagation, J.
Opt. Soc. Am., 68:892-899.




where D is the diffusion coefficient and ¢ is the eddy dissipation rate. Values for 1, have been
reported as millimeters?! in the first few meters above the surface, centimeters in the first few hun-
dred meters and in the troposphere?? and tens of centimeters in the stratosphere??.

In Figure 6, the value of the weighting function is shown as a function of 1, for different
receiver and source diameters. The value of the weighting function is plotted at the crossing
altitude (for the S = S, case) where the weighting function is a maximum. The dependence on in-
ner scale is computed via the modified von Kamman spectrum. The crossing altitude is again 5 km
and yields a Fresnel scale of approximately 5 cm. As is evident from the figure, the value of the
weighting function does not depend on inner scale provided 1, is smaller than the Fresnel scale.
(The effect of inner scale has a lesser dependence on source and receiver diameters.) If the Fresnel
scale is smaller than the inner scale, the refractive index spectrum dominates the integrand of the
weighting function at the small scale sizes of the inertial range, with a negligible contribution from
the sin? term. The inner scale is then the critical parameter instead of the Fresnel scale.

In Figure 7, the effect of inner scale on the weighting function in the vicinity of the crossing
altitude is shown. Besides the suppression of the magnitude of the peak value, it is seen that there
is also a significant broadening of the weighting function when 1, is greater than the Fresnel scale.
The width of the weighting function is increased and hence the resolution of the crossed path tech-
nique is degraded.

The contribution of inner scale effects to intensity variance and covariance has been noted
before? for propagation through homogeneous turbulence (that is, where C,? is a constant along
the path). Its effect in the crossed path technique is to be expected, but has not been mentioned in
any of the previous works on the variants of the crossed path technique’-!21%24.23.2627 Indeed, it ap-
pears that the effect of inner scale discussed here also applies to the techniques based on binary
star data; it is a consequence of the covariance of log amplitude. The contribution of the inner
scale in a crossed path lidar system must be eliminated or reduced if a meaningful measurement of
C,? is to be made; if it is not, the measurement depends on two unknown parameters, l, and C,2.
The situation is mitigated somewhat by a relation between € and C_2. Specifically, it can be shown
that

2IHil1, R.J. (1983) Inner-scale effect on the irradiance of light propagating in atmospheric turbulence, in Laser Beam Propagation in the Atmo-
sphere. Proc. of the SPIE, 410.

22Hoclrintz. W.K. (1985) Mecasurement of turbulent encrgy dissipation rates in the middle atmosphere by radar techniques: A review, Radio
Sci., 20:1403-1422.

23an, 1. (1982) Some Characteristics of Clear-Air Turbulence in the Middle Stratosphere, J. Atmos. Sci., 39:2553-2564.

*Lee. RE., and Harp, J.C. (1969) Weak Scattering in Random Media, with Applications to Remote Probing, Proc. IEEE, 87:375-406.
ZRoddier, C., and Vernin, J. (1977) Relative contribution of upper and lower atmosphere to integrated refractive-index profiles, Appl. Opt.. 16:
2252-2256.

%Rocca, A.. Roddier, F.. and Vernin, J. (1974) Detection of atmospheric turbulence layers by spatiotemporal and spatioangular correlation
measurements of stellar-light scintiflation, J. Opt. Soc. Am., 64:1000-1004.

T Azouit, M., and Vemin, J. (1980) Remote Investigation of Tropospheric Turbulence by Two-Dimensional Analysis of Stellar Scintillation, J.
Armaos. Sci., 37:15850-1557.
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Figure 6. The maximum value of the weighting function is shown versus the inner scale, 1,. The
calculations were made using the modified von Karman spectrum. The source and receiver
diameters were assumed equal and given by the values shown. The source was located at 10 km,
giving the crossing altitude and weighting function maximum at 5 km. The other values are identi-
cal to those used in Figure 2.

10 10

L1113l

A

~~ 10"

A4 dial

10°*

Agdd a1l

T T T T T T T
4000 4500 5000 5500 6000

Figure 7. The absolute value of the weighting function is shown in the vicinity of the crossing
altitude of 5 km for several values of inner scale, 1,. The same numerical values as in Figure 2 are
used, except that the receiver and backscatterer diameters are assumed equal and given as 5 cm.
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C,2 = a.€2? (T P,dT/dz), 97)

where a is a constant of order unity and f is a function of meterological (that is, non-fluctuating)
parameters. Upon substitution of 1, it follows that

C,2 = o(7.4)% D? £(T,P dT/dz) %", (99)

Thus, C,? is inversely related to l,; large C,2 means small 1,. We have also seen that for small 1,
the Fresnel scale effects dominate and the weighting function depends very little on the inner
scale. Strong layers of turbulence are likely to have small 1, (of the order of centimeters or less) in
the boundary layer and troposphere and the weighting function can be unbambiguously calculated
for these cases. For weak layers, the weighting function depends on the unknown L,. If the inner
scale is assumed to be less than the Fresnel scale for all altitudes of interest, the effect is to over-
estimate the weighting function for weak layers, and thereby underestimate C,2. As can be seen
from Figure 6, the averaging effect of the finite sources and receivers tends to reduce the over-
estimation of the peak of the weighting function.

This effect of inner scale cannot be eliminated and appears to impose a fundamental limita-
tion on the crossed path method. The exact contribution of inner scale is unknown; the calcula-
tions performed above have established that there is a contribution, but these calculation have been
based on the von Karman spectrum. This spectrum is ad hoc, without experimental basis, and was
introduced by Tatarskii'® for mathematical convenience. It does not model the experimentally ob-
served bump in the temperature spectrum?. Calculations performed by Hill** for a point source
and point detector show for propagation through homogeneous turbulence that the intensity vari-
ance has a significant contribution from the inner scale region that is manifested for 1, greater than
approximately 0.5(Az)"2. Hill’s analysis may be interpreted as showing that the modified von Kar-
man spectrum is a reasonable approximation to the true spectrum for 1, greater than about 3(Az)'?.
For the region 0.2(Az)'” to 2(Az)'”2, the agreement is poor due to the "bump" and the modified von
Karman spectrum underestimates the spectrum. A further interpretation of Hill’s analysis is that it
provides evidence that the effect of inner scale may be more prominent than the effect predicted
by using the modified von Karman spectrum.

The criterion for the inner scale effects to be negligible is that the Fresnel scale be larger
than L,, or specifically,

o < [2Ay(1-pzA] 2, (99)

where z is the altitude of the backscattering. The contribution of the inner scale of the spectrum to
the crossed path covariance may be minimized by maximizing the Fresnel scale. It is easy to see
that the Fresnel scale is maximized for y = 1/2, when the crossing occurs at the path midpoint. This
is equivalent to the requirement that the receiver and source separations be equal. This provides a
strong motivation for choosing the midpoint as the crossing point.

Finally, it is worth noting that, in the limit z >> z', the above requirement then becomes

ly < (2Az)'2. (100)

Hin, RJ. (1988) Comparison of scintillation methods for measuring the inner scale of turbulence, Appl. Opt., 47:2187-219).
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The altitude of interest is now the crossing altitude, z', rather than the source altitude. This is the
situation with the binary star method. Inner scale effects should manifest themselves in the binary
star data.

It can be argued that the spatial filtering performed by the finite receiver or source sizes can
be used to filter out the inner scale effect on the covariance. In principle it is possible to reduce
these effects by the use of a large enough aperture, as can be seen from Figure 6. The effect will
be reduced if the aperture sizes are selected such that the spatial wavenumbers in the band (2r/l,,
K,) are attenuated. If a maximum allowable inner scale is chosen as 10 cm and equal source and
receiver separations are assumed, the filtering of these effects requires receiver and source sizes
greater than about 12 cm in diameter. A practical lidar system could readily meet this criteria, but
the tradeoff is a reduction in signal strength and resolution. In addition, the filtering provided by
J,(x)/x is gradual and does not have a sharp transition; therefore, the inner scale effect is not
eliminated, but rather reduced. The apertures would have to be much larger to get a significant
reduction, but this would yield a significant reduction in scintillation.

4.5 Overall Path Weighting Function

The complication that results when both sources are in both receiver fields of view was dis-
cussed in Section 4.1 in terms of intensity. The weighting function described so far has applied to
the crossed path term. The theory can be extended to include the effect of the other three terms to
yield an overall path weighting function. Equation (34) gives the intensity covariance between
receivers | and 2:

where I; is the j™ source at the i™ receiver. The formal expression for the log amplitude
covariance, Equation (62), is in fact very general and states the covariance in terms of arbitrary 2-
dimensional vectors for receiver positions p, and p, and for source positions @,, and p,,. The first
and second terms of the total intensity covariance will yield a path weighting function found by
setting Po; = Po2, that is, both sources collocated:

Wii2:(Z'2) = Wy 50(2',2)

J(K(1-
= 6472K? f K dK ®y(K) J,(KYS) [;g%;ﬁa)]z
1 (KYR ;
[ K;R "2 sin?[y1-peK?/2].

(102)

where the subscripts on W denote the particular covariance term that gives rise to the effect. This
path weighting represents the intensity covariance of a single source viewed by two receivers
separated by S. The third term is simply the crossed path term. In our current notation, this term is:
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W 51(22) = 647k f K dK ®(K) Jo(KS-(1-1)So) [ BEU-D))2 (103)

K(1-y)a
(KR
[l sin[w1-paxcera].
The last term is given by the uncrossed path, which we get by setting p,, = -p,,, With Por =

So/2 (note sign reversal from crossed path case):

J(K(1- )a)]2

Wy x2) = 4T | K 0K 04K Joa(wsm-v)son [Rat-pa (104)

[RRTP sin?[w1-pexya].

It will be assumed that the average of source 1 is the same as source 2 in either receiver 1 or 2.
Specifically, we assume that

This results in the simple addition of the individual path weighting functions to yield the overall
path weighting function given by

W(z',z) = 64n2k? f K dK ®y(K) [ZJO(KyS) + To(KNS-(1-9)Sg)) + J(KhS+(1-1)Sh ]

JK(1-y) a)]z [

[K(I-Y)a e 7 sin?[y1-veKrai]

(106)

The net effect of both sources being seen by both receivers is the inclusion of additional J, terms
in the integrand. In Figures 8 and 9, the overall weighting function is shown for comparison with
the crossed term for separations of 10 and 1 cm, respectively. The overall weighting function for
the 1 cm case is significantly different than the cross term only. For the 10 c¢m separation, the
weighting function at the peak is unaffected by the additional terms. These results have a simple,
physical interpretation that substantiates the qualitative argument presented in Section 4.1. The
relevant Fresnel scale for the 1 km backscattering with midpoint crossing is about 1.6 cm (for A =
0.5 um) corresponding to the peak in the log amplitude spectrum (since this is larger than the inner
scale of 1 cm). First, consider the contribution of the term J,(KYS). If x, is the first zero of J,, there
will be minimal contribution to the integral over K for values satisfying

K > x,/1S. (107)

Writing this in terms of scale sizes, there will be minimal contribution for scale sizes, 1,, satisfying

1, < 2yS/x,. (108)

Substitution of the values into the right hand side for the peak altitude gives 1.3 cm and 13 cm for
1 cm and 10 cm separations, respectively. The spectral peak at the Fresnel scale is within the
"passband” of the J,, term for the 1 cm separation, while it is not for the 13 cm case. The J, term
that arises from the overall path scintillation of each source contributes when the source separation
is within a Fresnel scale and does not contribute significantly at larger separation. Note
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Figure 8. The absolute value of the weighting function is shown in the vicinity of the crossing
altitude of 500 m showing the magnitude of the total function and the crossed term only. The cal-
culation is done for 1 km backscattering, inner scale of 1 cm, source and receiver separations
equal and given by 10 cm, and source and receiver apertures of 1 cm.
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Figure 9. The absolute value of the weighting function is shown in the vicinity of the crossing
altitude of 500 m showing the magnitude of the total function and the crossed term only. The cal-
culation is done using the same numerical values as Figure 8, except the source and receiver
separations are given by 1 cm.
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that this numerical comparison has been made for the value at the peak corresponding to the cross-
ing altitude. Despite the negligible contribution at the peak for the 10 cm case, the figure shows
that for other altitudes, the contribution from the uncrossed terms may be larger that that from the
crossed term, but these are less important since the weighting function is down by more than an
order of magnitude from its peak value. The contribution of the J,(KYyS) term is not symmetric
about the midpoint, but applies more weight to the receiver end of the path.

Similar arguments apply to the second uncrossed term, J,(KIYS+(1-Y)S,l). There will be neg-
ligible contribution from this term from scales satisfying

1, < 2r[¥5+(1-1)So)/Xo. (109)

Comparing this with the magnitude of the term from the single source, whole path scintillation, it
can be seen that 1, <1, for any values of S, S,, and y. From this inequality, it follows that this sec-
ond uncrossed term has a narrower passband and thus a smaller contribution than the single source
uncrossed term. In our specific numerical example, the values of 1, are 2.6 cm and 26 cm respec-
tively for 1 and 10 cm separations. Both these values are larger than the Fresnel scale and thus in
both cases there are negligible contributions of this term to the total weighting function.

This discussion has been more quantitative than the earlier arguments about the importance
of the uncrossed path terms to the overall weighting function, but the conclusions have been the
same. The earlier discussion argued that the uncrossed covariances were negligible with respect to
their uncrossed variances, while in this section it has been shown that they may also be negligible
with repect to the crossed covariance. For a lidar system, the separations are likely to be tens of
centime*ers or even meters ... ..iese numbers yield cutoff scale sizes for the uncrosssed term that
are larger than the Fresne' s-aie. Consequently, their contribution to the overall weighting function
is negligible. This is not true for the binary star approach. Indeed, the numerical example of a 1 cm
separation at 1 km is equivalent (or 10 cm at 10 km) to an angular separation of the sources of 10
prad. This is the separation corresponding to the double star Castor which has been used in the
binary star method?.

4.6 Uplink Propagation Effects

A critical requirement of a lidar-based technique that has not been addressed is the effect of
the uplink propagation, or more precisely, the effect of the propagation of the lidar beam from the
transmitter to the backscattering region. Aspects of this problem have been mentioned in the dis-
cussion of the effect of backscatter spot size. It was argued that the scintillation effect on the
uplink would not be a problem because of the statistical averaging requirements. With respect to
beam size, a very strict criterion was presented in terms of the relevant Fresnel scale: for a 10 km
backscatter, the (0.5 pm) beam should be less than 6 cm in diameter, while for 1 km backscatter, it
should be less than 2 cm.

This criterion needs to be examined in terms of the specific effects of beam broadening due
to diffraction, turbulence and beam wander. The average beam width, p,, for a beam of diameter
D, can be expressed in terms of the diffraction-related width, p,4, and the turbulence-related width,

Py by

<pp2> = (D/2)Y1-z/f]? + p4* + <p>>, (110)
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where f is the distance to the focus (for a collimated beam, f = ¢) and where the diffraction width
is given by

Pa = 2z/(kD). (111)
The turbulence term is written as?
<p> = 422/(kpo)?[ 1 -0.62(py/D)"]% (112)
= pa (D/po)? [1 -0.62(py/D)7]65,

where p, is the transverse coherence length* for propagation from 0 to z given by
Po = (1.46 k2 J‘L C,2(m) (1 - n/z)*R dn}35. (113)
0

The transverse coherence length p, is simply related to the atmospheric coherence length®! r, by r,
= 2.1 p,. This expression is the spherical wave form of the transverse coherence length; some au-
thors® use the plane wave form of p, for a collimated beam which has no altitude weighting in the
integrand. In the turbulence literature, this beam broadening is usually discussed in terms of the
short-term beam width or the tilt-corrected beam width; the long-term beam width includes the
turbulence beam wander. Measurements of 1, for the plane wave case yield typical values at 0.5
pm of from 5 to 10 cm, with higher values at astronomical sites. These values translate into a
range for p, of about 2.5 to 5 cm. The broadening of a 0.5 pum beam can be estimated at 1 kim and
at 10 km using the value of 2.5 cm for p,. This requires the assumption that p, is the same for
these cases as for the ground to space case. This is reasonable since generally the largest tur-
bulence occurs near the ground and in the boundary layer and dominates p,. For a collimated
beam of 2 cm diameter at the transmitter, the turbulence beam broadening will be much smaller
than the diffraction effect: the 2 cm diameter beam will be of the order of 2.6 cm diameter at | km
and 17.4 cm in diameter at 10 km. For a focused beam, the 2 cm transmitter has a spot size of 1.9
cm if focused at 1 km and 17.2 cm if focused at 10 km. A 5 cm transmitter produces an interesting
example where both turbulence and diffraction effects contribute: at 10 km, the collimated and
focused cases yield spot sizes of 11.6 and 10.6 cm, respectively. If the 5 cm transmitter is focused
at 1 km, the spot size is 1.06 cm, while the collimated case yields 5.1 cm. The spread due to dif-
fraction can be reduced by increasing the aperture, but the turbulence spread remains and is
asymptotically independent of the diameter.

These calculations demonstrate that beam spreading is an important issue in the crossed path
technique. For a collimated beam, the narrow beam widths required to meet the specifications for
the spot size result in diffraction broadening being the dominant effect. If a focused beam is used
instead with a larger transmitter diameter, turbulence broadening becomes the dominant effect in

®Fante, RL. (1975) Electromagnetic Beam Propagation in a Turbulent Media, Proc. JEEE, 63: 1669-1692.
*®Yura, H.T. (1971) Atmospheric Turbulence Induced Laser Beam Spread, Appl. Opt., 10:2771-2773.

*Fried, D.L. (1966) Optical Resolution Through a Randomly Inhomogeneous Medium, J. Opt. Soc. Am., 56;1372-1379.
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determining spot size. When turbulence dominates, it should be emphasized that the beam width is
a fluctuating quantity, even during "homogeneous” turbulence conditions, and the width is
specified above in terms of its ensemble value. Physically, the effect of beam spread is to reduce
the peak value of the weighting function and broaden its width. The effect of the fluctuating lidar
spot size is that now the weighting function itself is a fluctuating quantity. The relevant quantity is
the average weighting function. This in turn requires that the transverse coherence length be
known, or equivalently, the C,2 profile.

The calculation of the average weighting function needs to be done numerically. This cal-
culation will not be performed here and is left for follow-on research. Certain aspects of the aver-
age can be estimated, however. The situation is not as significant for the crossed path approach as
it may seem. As can be seen from Figure 5, even for a very broadened beam of 20 cm, the weight-
ing function is still very narrow and far superior to other techniques. Furthermore, the small spots
have a weighting function with the greatest magnitude, while for large spots, the weighting func-
tion is the smallest. Whatever the distribution of spot size, the average weighting function will
weight the less probable large spots the least and spots smaller than the average the most. This
problem needs to be addressed. Specifically, the distribution of the beam spread is required to cal-
culate numerically the average weighting function. It may be that this average weighting function
does not significantly differ from that derived by using the RMS spread calculated from the above
expressions. Another possible scenario derives from the apparently circular argument that the
measurement of C,? via the crossed path method requires the knowledge of the beam spread which
in tum requires the knowledge of the integrated C 2. The crossed path measurement may need to
be made in conjunction with transverse coherence length measurements of a stellar source. These
auxiliary measurements would then be used to calculate the spot size, and hence the weighting
function, to enable the crossed path technique to extract altitude-resolved C 2. This is an important
aspect to the problem that needs to be examined further.

The other important effect of the lidar uplink propagation arises from the beam wander. The
effect of beam wander is that the backscatter source separation, S,, becomes a random variable.
The crossing altitude becomes a random variable, as does the weighting function. Wander results
primarily from eddies of the same order as the beam size. If the two uplink beam are separated by
a distance large with respect to the beam diameters, the wander in the two beams can be consider-
ed as statistically uncorrelated, since different eddies will be responsible for the wander in each
uplink beam. The wander may be correlated at some time lag due to frozen turbulence effects, but
the correlation at the same time is treated as absent. The mean square wander, <pc2>, of either a
collimated or focused beam can be calculated from

<p2>= 2.97 L(k*pyD'?). (114)

It follows that the beam wander has no wavelength dependence, since p,*” behaves as k2. This ex-
pression shows that wander can be reduced by increasing the transmitter diameter. Strictly, this
form applies to the regime where D > p,. For the case where D < p,, there is negligible wander
and the primary effect of turbulence is beam broadening. Wander can also be reduced by using a
small enough aperture, that is, small relative to the turbulence scales. Fante?® shows results from
numerical calculations for the entire range of D and p,, that exhibit this behavior.

As a numerical example, consider a 0.5 pm beam of 5 cm diameter at the transmitter, with
receiver separation of 1 m and the nominal backscatter spot separation of 1 m. For propagation to
10 km, the nominal crossing altitude is S km. If the turbulence is specified in terms of 2.5 cm for




Po, the RMS wander of a single beam is calculated to be 5 cm in radius. The two uplink lidar
beams are assumed to wander independently with RMS values of 5 cm, and the separation be-
tween the two spots fluctuates about the average of 1 m with an RMS value of 7 cm. This fluctua-
tion in separation yields a fluctuation in the crossing altitude about the 5 km average by £175 m.
Clearly, this fluctuating crossing altitude will result in an average weighting function of reduced
peak magnitude and greater width than a non-fluctuating separation. The average weighting func-
tion due to wander can be calculated from the statistical distribution of wander. This will not be
done here and represents an important problem for follow-up investigation. As with beam
broadening, the average weighting function due to wander is neede.' .0 determine C_? and gener-
ally requires knowledge of the wander, which in tumn requires p, ot equivalently, C ? along the
path. Such data can be provided by simultaneous measurements of p,.

Beam broadening and wander of the uplink lidar beam are important parameters that are re-
quired to determine the path weighting function and C,? in the crossed path lidar. The impact of
these parameters must be taken into account in the implementation of a system and various
tradeoffs made. For example, for a narrow collimated beam of the order of a few centimeters
diameter at the transmitter, wander will be less than the broadening. In effect, the beam can be
considered to wander within a radius given by the broadening term. Furthermore, the diffraction
broadening dominates the turbulence broadening in such cases. For such narrow transmitters, the
weighting functions can be calculated using our earlier expressions using the diffraction-limited
spot size; the uplink turbulence effects of wander and broadening can be ignored. This is a strong
argument in favor of narrow beams. However, these diffraction-broadened beams will exceed the
spot size requirements discussed earlier. Such narrow beams would result in a signal and resolu-
tion degradation. This situation is an example of the tradeoffs required in a practical system.

5. CONCLUSION

This report has demonstrated that the crossed path technique possesses unique features that
can be exploited for the lidar remote sensing of C,? with high spatial and temporal resolution. The
uniqueness of this approach stems from the sharpness of the path weighting function. The ap-
proach is conceptually a geometric one and can be regarded as a form of intensity interferometry.
Since the approach measures the normalized intensity covariance, it is less sensitive to fluctuations
in laser output and laser instabilities.

There are numerous parameters, both systemic and atmospheric, to take into account in a
system design. There are many tradeoffs to be made. One important class of parameters pertains to
the strength of the backscattering, and hence the signal strength. This class involves the choice of
wavelength and can be assessed in terms of a simulation using such existing lidar simulation codes
as BACKSCAT?®. The strength of the backscatter signal falls off as density in the case where
Rayleigh scattering dominates. This in tum determines the integration time and the temporal
resolution of the method. In order to compensate for this decrease in signal strength, the signal
needs to be strengthened, perhaps by decreasing the receiver or source separations. This would
degrade resolution. Ideally, the resolution of the weighting function would exactly match the

32Guivem, N.R., Rafuse, §.E., Hummel, J.R., and Cheifetz, M.G. (1988) BACKSCAT Lidar Backscatter Simulation User's Manual for Version
1.0, Geophysics Laboratory, Technical Report ARGL-TR-88-0331, ADA219487.




receiver gating. With repect to the lidar formalism presented in Section 3, this situation cor-
responds to a diagonal weighting function matrix. If design tradeoffs require the use of broader
weighting functions so that the matrix is no longer diagonal, the crossed path approach is in no
way invalidated. The path weighting function is still very sharp and localized and resuits in a
sparse matrix (that is, one which has only a few nonzero elements adjacent to the diagonal) which
is readily inverted.

The outlining of the various restrictions on the system parameters seems to present many
conflicts. It is doubtful that a single pair of receivers could perform an altitude profile. Rather, a
single pair of receivers could be used to probe a limited altitude range, say 3 or 4 km to 7 or 8 km
with a vertical resolution of 150 meters. Other pairs would be required to probe other altitude
ranges; this is not regarded as a serious drawback, since the receivers consist of a telescope of a
few centimeters diameter and a photomultiplier tube and are consequently relatively simple and
inexpensive. The achievement of this goal of performing some prototype experiments to measure
C,? via the crossed path methoa over a limited altitude range is the test of the technique. This
would demonstrate the capability to remotely sense C_2 with high spatial and temporal resolution,
capabilities that currently do not exist.
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